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Three-dimensional quantitative structure—activity relationship (3D QSAR) methods, compara-
tive molecular field analysis (CoOMFA) and comparative molecular similarity indices analysis
(CoMSIA), were applied on a series of 1,4-dihydropyridines possessing antitubercular activity.
The study was performed using 33 compounds, in which 22 molecules were used for the
derivation of the 3D QSAR models (training set) and 11 molecules were used to evaluate the
predictive ability of the derived models (test set). Superimpositions were performed using three
alignment rules: atom-based fitting, SYBYL QSAR rigid body field fit of the steric and
electrostatic fields of the molecules, and flexible fitting (multifit). Both methods were analyzed
in terms of their predictive abilities and produced comparable results with high internal as
well as external predictivities. Steric and electrostatic fields of the inhibitors were found to be
relevant descriptors for SAR. Use of lowest unoccupied molecular orbital energies or ClogP as
additional descriptors in the QSAR table did not improve the significance of the 3D QSAR
models. Both CoMFA and CoMSIA models based on multifit alignment showed better correlative
and predictive properties than other models. A QSAR study using genetic function approxima-
tion was also performed for the same set of molecules using different types of physicochemical
descriptors to deal with cell-based activity data. The QSAR models revealed the importance of
spatial properties and conformational flexibility of side chains for antitubercular activity.
Inclusion of fractional polar solvent accessible surface area as a descriptor in the model
generation resulted in models with significant internal and external predictivities for the same

test set molecules, which may support the possible mode of action of these compounds.

Introduction

Mycobacterium tuberculosis, a human pathogen caus-
ing tuberculosis (TB), claims more human lives than any
other bacterial pathogens.l=3 About one-third of the
world population is infected with M. tuberculosis, 10%
of which will develop the disease at some point in their
lives.# The current treatment of active TB is basically
a four drug regimen comprising isoniazid (INH), rifamp-
in, pyrazinamide, and ethambutol for a period of at least
6 months. The failure of patients to complete the
therapy has led to the emergence of multidrug resistant
TB (MDRTB). Moreover, the pandemic of human im-
munodeficiency virus (HIV), which dramatically in-
creases susceptibility to develop active TB, has exacer-
bated the situation. The growing number of cases of
MDRTB has become such a public health threat that
the World Heath Organization (WHO) has declared TB
a global public health emergency.® There is an urgent
need for new chemotherapeutic agents to combat the
emergence of the resistance and strategies, which can
effectively shorten the duration of chemotherapy.

INH, a well-known antitubercular drug, is believed
to kill mycobacteria by inhibiting the biosynthesis of
mycolic acids—critical components of the mycobacterial
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cell wall. The catalase and peroxidase activities are
thought to participate in the drug sensitivity mechanism
by converting INH in vivo into its biologically active
form, which then acts on its intracellular target.® In
analogy to INH, pyridines substituted with alkylated
tetrazoles (designed as lipophilic precursors of isosteres
of isonicotinic acid) have been reported to possess
antitubercular activity against the Hs7Rv strain of M.
tuberculosis.” These compounds, after penetration of the
mycobacterial cell wall, could be biotransformed by
esterases or peroxidase-catalases. They are more active
than the unmodified polar isosteres of isonicotinic acid,
which may be due to better penetration of these agents
into the cell wall of the mycobacteria.

On the basis of these observations, some 4-substituted
phenyl-2,6-dimethyl-3,5-bis-N-(substituted phenyl)car-
bamoyl-1,4-dihydropyridines were synthesized and tested
against M. tuberculosis Hz7Rv.8

To further explore the structural requirements of 1,4-
dihydropyridines for the antitubercular activity, two
methods of three-dimensional quantitative structure—
activity relationship (3D QSAR), comparative molecular
field analysis (CoMFA) and comparative molecular
similarity indices analysis (CoMSIA), were performed.
The CoMFA method of 3D QSAR was introduced in
1988 by Cramer,? in which an assumption is made that
the interaction between an inhibitor and its molecular
target is primarily noncovalent in nature and shape-
dependent. Therefore, a QSAR may be derived by
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sampling the steric and electrostatic fields surrounding
a set of ligands and correlating the differences in these
fields to biological activity. CoMFA calculates steric
fields using Lennard—Jones potential and electrostatic
fields using a Coulombic potential. This approach has
been widely accepted'®!! and exceptionally valuable,
although it is not without problems. In particular, both
of the potential functions are very steep near the van
der Waals surface of the molecule, causing rapid changes
in surface descriptions and requiring the use of cutoff
values so that calculations are not done inside the
molecular surface. In addition, a scaling factor is applied
to the steric field, so that both fields can be used in the
same PLS (partial least squares) analysis. Finally,
changes in orientation of the superimposed molecule set,
relative to the calculation grid, can cause significant
changes in COMFA results, again probably due to strict
cutoff values. The alignment rule, i.e., molecular con-
formation and orientation, is one of the most sensitive
input areas for COMFA studies. Several researchers to
date have used traditional atom-based alignment meth-
ods. Recently, Kulkarni et al. have proposed a new
alignment method based on molecular electrostatic
potential (MEP).12 Also, alignment based on the phar-
macophore models has been used as an input for COMFA
studies.13

The CoMSIA method of 3D QSAR analysis was
introduced by Klebe'4 in 1994, in which using a common
probe atom, similarity indices are calculated at regularly
spaced grid points for the prealigned molecules. For the
distance dependence between the probe atom and the
molecule atoms, a Guassian function is used. Because
of the different shape of the Guassian function, the
similarity indices can be calculated at all grid points,
both inside and outside the molecular surface. Also,
CoMSIA is not sensitive to changes in the orientation
of the superimposed molecules in the lattice, and the
correlation results obtained by CoMSIA can be graphi-
cally interpreted in terms of the field contribution maps
allowing physicochemical properties relevant for binding
to be easily mapped back onto molecular structures.516

Although the CoMSIA approach presently considers
five different property fields (steric, electrostatic, hydro-
phobic, and hydrogen bond donor and acceptor fields)
to focus on different physicochemical properties, the
fields are highly interdependent on each other. Hence,
to avoid duplication of fields and for direct comparison
with CoMFA, only steric and electrostatic fields have
been considered. Furthermore, the hydrophobic field has
been treated separately and in combination with the
steric and electrostatic fields. Because the hydrogen
bond donor and acceptor properties are implicitly con-
sidered in electrostatic interactions, they have not been
considered here.

Biological activity of these compounds is based upon
cell-based assays. In the present study, we have derived
QSAR models for these compounds using different
molecular descriptors to make better predictions for the
cell-based activity data. We have used genetic function
approximation (GFA) technique to generate different
QSAR models from various descriptors. The GFA tech-
nique was used since it generates a population of
equations rather than one single equation for correlation
between biological activity and physicochemical proper-
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ties. GFA, developed by D. Rogers, involved a combina-
tion of Friedman’s multivariate adaptive regression
splines (MARS) algorithm with Holland'’s genetic algo-
rithm to evolve a population of equations that best fit
the training set data.l’—24

This is done as follows: (i) An initial population of
equations is generated by random choice of descriptors.
The fitness of each equation is scored by lack-of-fit
(LOF) measure

LOF = LSEA1 — [(c + d x p)/m]}?

where LSE is the least squares error, ¢ is the number
of basis functions in the models, d is the smoothing
parameter that controls the number of terms in the
equation, and p is the number of features contained in
all terms of the models. (ii) Pairs from the population
of the equation are chosen at random and “crossovers”
are performed and progeny equations are generated. (iii)
The fitness of each progeny equation is assessed by the
LOF measure. (iv) If the fitness of the new progeny
equation is better, then it is preserved.

A distinct feature of GFA is that it produces a
population of models. GFA models provide some useful
additional information such as relevance of a particular
descriptor in the model and activity prediction. The
combination of robust statistical technique GFA coupled
with the use of different types of molecular descriptors
would result in better prediction of biological activity
for antitubercular agents. In this paper, we present the
CoMFA, CoMSIA, and QSAR using GFA of the antitu-
bercular 1,4-dihydropyridines.

Materials and Methods

Biological Data. A data set of 33 molecules belonging to
the 1,4-dihydropyridine class, synthesized in our laboratory
and evaluated for antitubercular activity, was used for this
study.® The antitubercular activity was determined using the
modified BACTEC 460 system?® against M. tuberculosis Ha7-
Rv ATCC 27294. The activity was expressed as percent
inhibition (p), which is defined as

p = [1 — (GI of test sample/GI of control sample)] x 100

The biological activity data, originally reported as “response
at a standard concentration” form, were converted for QSAR
purposes to “concentration needed to produce a standard
response” form by using eq 1, the “logit transformation”.?6

activity = log {% activity of standard/(100% —
% activity of standard)} (1)

It is imperative to evaluate the predictivity of the 3D QSAR
models generated. The molecules were divided into training
set and test set. Selection of the training set and the test set
molecules was done by considering the fact that test set
molecules represent a range of biological activity similar to
that of the training set. Thus, the test set is the true
representative of the training set. The structures of the
training and test set molecules are given in Tables 1 and 3,
respectively.

CoMFA and CoMSIA Analyses. All of the molecular
modeling studies, COMFA, and CoMSIA reported herein were
performed on a Silicon Graphics INDY R5000 workstation
using SYBYL 6.6 molecular modeling software from Tripos,
Inc., St. Louis, MO.?” All of the compounds were built from
fragments in the SYBYL database. Each structure was fully
geometry-optimized using the standard Tripos force field?® with
a distance-dependent dielectric function until a root mean
square (rms) deviation of 0.001 kcal/mol A was achieved. The
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Table 1. Structures of Molecules Belonging to the Training Set
(Ref 8)

R
o
R R
1-18 19-22
compd R R' R2 R3 Rs Rs
1 H Cl H NO; H H
2 H Cl OH H OCHg3; H
3 H Cl H OCHg3 OCHj3 OCH3
4 H NO; Cl H Cl H
5 H NO, H H N(CHs); H
6 H NO; H H Cl H
7 Cl H H H SCH3; H
8 Cl H Cl H H H
9 Cl H H H Cl H
10 Cl H Cl H Cl H
11 Cl H SH H H H
12 OCHg3; H H H SCH3 H
13 OCH3 H Cl H Cl H
14 OCH3 H H NO, H H
15 OCHg3; H Cl H H H
16 H H H NO; H H
17 CHs CH3s H H SCH3; H
18 CHs CHjs H H H H
19 CHs; CH3; H H OCHg3; H
20 H NO; Cl H H H
21 H NO; Cl H Cl H
22 H NO; H H H H

Table 2. Observed vs Calculated Activity Values for Molecules
in the Training Set

predicted activity

compd observed activity CoMFA2  CoMSIA? GFAP
1 —0.3888 —0.0242 —0.1413 0.0393
2 0.6297 0.8282 0.5897 0.4289
3 1.1949 1.2392 1.0726 1.1815
4 1.3802 1.2136 1.0076 1.1643
5 1.5096 1.3292 1.7435 1.4642
6 0.2126 0.3863 0.5946 0.9305
7 0.5496 0.3780 0.1999 0.3405
8 —0.6585 —0.9159 —0.7518 —0.8080
9 —0.6886 —0.4326 —0.5456 —0.6190
10 —0.9079 —0.5567 —0.5669 —0.3647
11 —0.9542 —0.9428 —0.7899 —0.3478
12 1.1233 1.2046 1.1426 0.8690
13 1.0047 0.4953 0.5593 0.5121
14 0.2498 0.2424 0.6680 1.1209
15 -0.2311 0.2553 0.3570 —0.1396
16 0.4775 0.0902 —0.1135 0.2652
17 0.1580 —0.0439 —0.0769 —0.1259
18 —0.8653 —1.0646 —1.0399 —-1.1758
19 —0.1580 —0.0991 —0.1511 —0.2345
20 1.5096 1.5595 1.4332 1.5970
21 1.6901 1.8011 1.6006 1.3101
22 1.1949 1.0887 1.2400 0.6256
a Results using alignment I11. ® Predicted biological activity

calculated using eq 6 in Table 9.

partial atomic charges required for the electrostatic interaction
were computed by a semiempirical molecular orbital method
using the MOPAC 6.0 program. The charges were computed
using the PM3 Hamiltonian (keywords: 1SCF, MMOK).2°:30

The conformational search was performed using systematic
search protocol. The rotatable bonds in all molecules were
searched from 0 to 360° in 10° increments. The minimum
energy conformations thus obtained were minimized using the
Tripos force field and subsequently used in the analysis.
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Table 3. Structures of Molecules in the Test Set (Ref 8)

Ry
" R3 Rll
R R; R'
0 H O
¥ YT N
R
H; § CH;3
compd R R’ R" R2 R3 R4
23 H H NO, H H SCH3
24 H NO, H H H SCH3
25 H NO, H Cl H H
26 OCHsz; H H H H N(CHs)2
27 H H NO, OH H H
28 H cl H H H OH
29 H H H H H SCH3
30 CHs CH; H H NO, H
31 Cl H H H H OCHj3
32 CHs H CH; OH H H
33 Cl H H OH H H
R RI
R R

Figure 1. Atom-based alignment.

Compound 21 (most active compound) was chosen as the
template molecule, on which other molecules were aligned.

Alignment Rule. In the present study, three different
alignment rules were adopted.

Alignment I. In this, heavy atoms of the 1,4-dihydropyri-
dine nucleus were used for rms fitting onto the corresponding
atoms of the template structure (compound 21). The atoms
used for alignment are marked with an asterisk (*) in Figure
1. The alignment of molecules using rms fitting is shown in
Figure 8a.

Alignment Il. This was carried out by using the SYBYL
QSAR rigid body field fit command within SYBYL and using
compound 21 as the template structure. Field fit adjusts the
geometry of the molecule such that its steric and electrostatic
fields match the fields of the template molecule. The field fit
alignment of the molecules is shown in Figure 8b.

Alignment I11. In this case, alignment of the molecules was
carried out by flexible fitting (multifit) of atoms of the
molecules to the template structure. This involved energy
calculations and fitting onto the template molecule by applying
force (force constant = 20 kcal/mol A) and subsequent energy
minimization. The heavy atoms of the 1,4-dihydropyridine
nucleus were considered for this alignment (Figure 1). The
aligned molecules are shown in Figure 8c.

CoMFA steric and electrostatic interaction fields were
calculated at each lattice intersection point of a regularly
spaced grid of 2.0 A. The grid pattern, generated automatically
by the SYBYL/CoMFA routine, extended 4.0 A units in X, Y,
and Z directions beyond the dimensions of each molecule. The
steric term, which represents van der Waals (Lennard—Jones,
6—12) interactions, and the Coulombic term, which represents
the electrostatic interactions, were calculated using the stan-
dard Tripos force field. A distance-dependent dielectric expres-
sion € = ¢Rj; with ¢o = 1.00 was adopted. An sp® carbon atom
with a van der Waals radius of 1.52 A and +1.0 charge was
used as the probe to calculate the steric and electrostatic fields.
Values of the steric and electrostatic fields were truncated at
30 kcal/mol. The electrostatic fields were ignored at the lattice
points with maximal steric interactions.
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Table 4. Observed vs Predicted Activity Values for Molecules
in the Test Set
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Table 5. Summary of Results from CoMFA and CoMSIA
Analyses

predicted activity alignment | alignment 11 alignment 111
compd observed activity CoMFA2  CoMSIA? GFAP CoMFA CoMSIA CoMFA CoMSIA CoMFA CoMSIA
23 1.6901 2.1747 2.2078 1.8045 rgv 0.533 0.558 0.547 0.509 0.563 0.562
24 1.5096 1.2541 1.3834 1.4635 Spress 0.687 0.649 0.657 0.684 0.646 0.646
25 1.2787 0.8733 0.8437 0.7450 r?onv 0.930 0.887 0.956 0.890 0.919 0.884
26 1.1233 1.3892 1.4809 0.8370 0267 0327 0204 0324 0278 0.330
27 1.0606 1.2600 1.4481 1.4077 components 5 4 4 4 4 4
28 0.5754 —0.1829 —0.3523 —0.6351 F values 42.326 33.525 92.649 34.390 48.649 32.320
29 0.3474 0.7904 0.2145 —0.4453 Prz=0 0.00 0.00 0.00 0.00 0.00 0.00
30 0.0521 —0.7104 —0.4597 0.2869 fraction
31 —0.3679 —0.1816 00485 01573 steric 0583 0332 0550 0330 0598 0.328
32 ~0.4319 ~08590  —1.0642 —0.8799 electrostatic  0.417 ~ 0.668 0450 0670 0402  0.672
33 —1.1949 —0.5632  —0.6004  —0.3561 g 0716 0700 0686 0660 0707 0.676
aResults using alignment 111.  Predicted biological activity ria 0.960 0913 0948 0.936 0.947 0.919
calculated using eq 6 in Table 9. sb 0.022 0.051 0.021 0.036 0.031 0.038

CoMSIA calculates similarity indices at the intersections
of a surrounding lattice. The similarity index Ar 3! or a
molecule j with | atoms at the grid point q is determined as
follows:

ary — —ar 2
Ap () = ziwprobe,kwik € g

where wix is the actual value of the physicochemical property
k of atom i; wprobe is the probe atom with charge +1, radius 1
A, and hydrophobicity = 1; and riq is the mutual distance
between the probe atom at grid point q and atom i of the
molecule. Three physicochemical properties k (steric, electro-
static, and hydrophobic) were evaluated, using a common
probe atom with 1 A radius, charge, and hydrophobicity. A
Guassian type distance dependence was considered between
the grid point g and each atom i of the molecule. The value of
the so-called attenuation factor o was set to 0.3. A lattice of 2
A grid spacing was generated automatically.

PLS Analysis. To obtain a 3D QSAR, PLS® fitting was
used. The PLS method has been applied successfully in
numerous QSAR studies aiming to rationalize those structural
features affecting biological activity. PLS regression seeks a
relationship between Y and X, where vector Y is the response
or dependent variable and X represents the descriptor data.

PLS analyses were performed following the COMFA stan-
dard implementation in SYBYL. The different descriptor
blocks have been scaled to each other using the CoMFA
standard scaling option. To check statistical significance of the
models, cross-validations were done by means of the leave-
one-out (LOO) procedure. The results from the cross-validation
analysis were expressed as the cross-validated r? (rfv). It is
defined as rf\, =1 — PRESS/S(Y — Ymean)?, Where PRESS =
S(Y = Yoreo)?.

The optimum number of components was determined by
selecting the smallest spress Value. Spress IS the root mean
predictive error sum of squares. It is an expected uncertainty
in the prediction for an individual compound based on the data
available from other compounds in the set.

Spress = (PRESS/(n — ¢ — 1))*?
where n = number of rows and ¢ = number of components.
Usually the smallest spress value corresponds to the highest r3,
value. The optimal number of components was subsequently
used to derive the final QSAR models. For all conventional
analyses (no cross-validation), the “minimum ¢” standard
deviation threshold was set to 2.0 kcal/mol. The r2, Spress
r2 . and SE values were computed as defined in SYBYL. SE
is the standard error of estimate. It is a measure of the target
property uncertainty still unexplained after the QSAR has
been derived.

In Table 5, Pr2 = 0 means the probability of obtaining the
observed F ratio value by chance alone, if the target and the
explanatory variables themselves are truly uncorrelated. When

2 Results from 100 runs of bootstrapped analysis.

Table 6. Results of Analysis with Randomized Biological
Activities and Cross-Validation Using Five Groups

2 a 2 p
rvb rcv
CoMFA® CoMSIA® CoMFA® CoMSIA®
mean —0.149 —0.292 0.497 0.430
SD 0.260 0.177 0.202 0.076
high 0.619 —0.010 0.706 0.572
low —0.650 —0.623 0.132 0.305

a Cross-validated r2 with randomized biological activity average
of 100 runs. P Cross-validated r? using five groups with optimum
number of components average of 25 runs. ¢ Results of analysis
with alignment I11.

Pr2 = 0 is zero, then results are not by chance and are
significant. Additionally, to perform an even more rigorous
statistical test, several runs of cross-validations using five
groups were done in which each target property value is
predicted by a model based on about 4/5 or 80% of the available
data. To further assess the robustness and statistical confi-
dence of the derived models, bootstrapping analysis (100 runs)
was performed.

A common test to check the consistency of the models is to
scramble the biological data and repeat the model derivation
process, allowing detection of possible chance correlations.
After our data set was randomized in several distinct ways,
in all cases, we only observed very low or negative r?v values
in the PLS analyses (Table 6).

QSAR and GFA. All of the molecular modeling studies
were done using Cerius2 (version 3.5) molecular modeling
software® running on Silicon Graphics O2 R5000 workstation.
All of the molecules were imported within Cerius2. Partial
charges were assigned using charge equilibration method.3*
All of the molecules were minimized until root mean square
deviation 0.001 kcal/mol A was achieved and used in the studly.

Calculation of Molecular Descriptors. Various types of
molecular descriptors were calculated for each molecule in the
study table using the default settings within Cerius2. A total
of 31 descriptors categorized as (i) molecular shape analysis
(MSA), (ii) spatial, (iii) electronic, (iv) structural, and (v)
thermodynamic were calculated. A complete list of descriptors
used in the study is given in Table 8.

MSA Descriptors.®®* MSA descriptors were calculated using
the MSA module within Cerius2. The lowest energy conformer
of compound 21, the most active compound, was taken as
reference for the calculation of the MSA descriptors.

The QSAR analysis builds models of biological activity using
physicochemical properties of a series of compounds. The basic
assumption is that the variations of biological activity within
a series can be correlated with changes in measured or
computed molecular features of the molecules. To fit the
equations and thereby generate QSAR models, we have used
the recently developed GFA method.
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Table 7. Results of COMSIA Analysis with Hydrophobic,
Steric, and Electrostatic Fields Alone and in Combination

hydrophobic2 steric? electrostaticc CoMSIAab

rgv 0.424 0.287 0.489 0.603

Spress 0.847 0.947 0.719 0.678

r?onv 0.908 0.844 0.862 0.939
0.339 0.410 0.374 0.266

components 8 6 5 7

r? —0.347 0.798 0.905 0.578

pred

a Results of analysis with alignment I111. ® COMSIA results using
steric, electrostatic, and hydrophobic fields taken together.

A training set of 22 compounds, which was used for the
CoMFA and CoMSIA studies, was used for the QSAR study.
GFA was performed using 100 000 crossovers, a smoothness
value of 1.0, and other default settings within Cerius2.

A population of 100 equations was generated in each run
by using a set of 31 descriptors and linear basis functions. The
set of equations generated for each chemical class was evalu-
ated on the following basis: (i) LOF measure, (ii) variable
terms in the equation, and (iii) predictivity of the equation
(predictive r? value).

Cross-validated r? values (rfv) were calculated using the
cross-validation test option in statistical tools supported within
Cerius2.

Predictive r? Value. The predictive r? was based only on
the molecules not included in the training set and is defined
as

Foreq = (SD — PRESS)/SD

where SD is the sum of the squared deviations between the
biological activity of the molecules in the test set and the mean
biological activity of the training set molecules and PRESS is
the sum of the squared deviations between predicted and
actual activity values for every molecule in the test set. Like

CV, the predictive r? can assume a negative value reflecting a
complete lack of predictive ability of the training set for the
molecules included in the test set.3¢

Table 8. Descriptors Used in the Present Study

Kharkar et al.

Results and Discussion

CoMFA and CoMSIA Analyses. The results of
CoMFA and CoMSIA studies are summarized in Table
5. All of the analyses reveal comparable cross-validated
r2 values. COMFA analysis based on alignment | yielded
a correlation with an r , 0f 0.533 (five principal compo-
nents) and a conventional r2 of 0.930. This model
displayed a good external predictivity with rpred of
0.716. CoMSIA studies using alignment | yielded an r
of 0.558 using four components, and rZ,,, was 0.887.
This model also exhibited a good predictive ability with
Moreq OF 0.7.

Realignment of the compounds using rigid body field
fit (alignment II) improved the significance of the
CoMFA model with r3, of 0.547 (4 pc) and r2,,, of 0.956.
The model also revealed good external predictivity
(rpred = 0.686). CoMSIA analysis using alignment 1
led to a slightly decreased internal predictivity (rcv =
0.509 with 4 pc). The conventional r2 for this model was
0.890. The model obtained showed external predictivity
with an r’,.4 of 0.660.

CoMFA analysis based on flexible fitting (alignment
I11) produced an internally predictive (ri\, = 0.563 with
4 pc) and statistically significant (rcom, = 0.919) model.
A high bootstrapped (100 runs) r2 of 0.947 4+ 0.031 adds
a high confidence limit to this analysis. The model
exhibited good external predictivity with an r2, of
0.707 for compounds in the test set. COMSIA analysis
with alignment 11l also resulted in a model with best
internal predictivity (rCv = 0.562 with 4 pc) and statis-
tical significance (rconv = 0.884). The bootstrapped
analysis (100 runs) resulted in an rﬁs of 0.919 with a
standard deviation of 0.038. The model showed a high
predictive r? of 0.676.

no. descriptor type description

1 DIFFV MSA difference volume

2 COsv MSA common overlap steric volume

3 Fo MSA common overlap volume ratio

4 NCOSV MSA noncommon overlap steric volume

5 ShapeRMS MSA RMS to shape ref

6 SRVol MSA volume of shape ref compd

7 Vm spatial molecular volume

8 Area spatial molecular surface area

9 Density spatial molecular density

10 RadOfGyr spatial radius of gyration

11 PMI_mag spatial principal moment of inertia

12 PMI_X spatial principal moment of inertia X component
13 PMIL_Y spatial principal moment of inertia Y component
14 PMI_Z spatial principal moment of inertia Z component
15 Apol electronic sum of atomic polarizabilities

16 Dipole_mag electronic dipole moment

17 Dipole_X electronic dipole moment, X component

18 Dipole_Y electronic dipole moment, Y component

19 Dipole_zZ electronic dipole moment, Z component

20 HOMO electronic highest occupied molecular orbital energy
21 LUMO electronic LUMO energy

22 Sr electronic superdelocalizability

23 MW structural molecular weight

24 RotlBonds structural no. of rotatable bonds

25 HbondAcc structural no. of hydrogen bond acceptors

26 HbondDon structural no. of hydrogen bond donors

27 AlogP thermodynamic logarithm of partition coefficient

28 Fh2o thermodynamic desolvation free energy for water

29 Foct thermodynamic desolvation free energy for octanol

30 Hf thermodynamic heat of formation

31 MolRef thermodynamic molar refractivity
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Figure 2. Calculated vs observed activity from CoMFA and
CoMSIA analyses of the training set. Both results are from
alignment I1I.

The LOO cross-validation method might lead to high
rg\, values, which do not necessarily reflect a general
predictiveness of the models. Therefore, cross-validation
using five groups was performed. In this method, a
model based on about 80% of the available data predicts
each target property value. The random formation of
the cross-validation groups may have an effect on the
results. Hence, cross-validation was performed 25 times
for all of the analyses. The results of cross-validation
using five groups and randomized activities are reported
in Table 6. The mean r2, values were slightly lower as
compared to the values obtained in the LOO method.
In no case were r2, values negative. The results ob-
tained suggest that there is a good internal consistency
in the underlying data set.

The real test for the model predictiveness is to predict
the activity of compounds, which were not used in the
model generation. To check the external predictivity of
the model, we used the test set, which was comprised
of 11 compounds. Both the CoMFA and the CoMSIA
models exhibited a good predictiveness on these com-
pounds. The observed and calculated activity values for
training and test set molecules are given in Tables 2
and 4, respectively. The plots of calculated vs observed
activity values for training set molecules and predicted
vs observed activity values for the test set molecules
are shown in Figures 2 and 3, respectively.
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Figure 3. Predicted vs observed activity from CoMFA and
CoMSIA analyses of the test set. Both results are from
alignment II1I.

The compounds used in the present study may act as
precursors and after penetration into the mycobacterial
cell wall may lead to the 3,5-dicarboxylate anions by
enzymatic hydrolysis. These anions may then interact
with some receptor site to inhibit important biochemical
function(s) crucial for the survival of mycobacteria. To
consider such interactions in CoMFA and CoMSIA,
lowest unoccupied molecular orbital (LUMO) energies
(eV) of the compounds were used as a third descriptor.
The analysis of the QSAR table shows that LUMO
decreased the statistical significance of both the CoOMFA
and the CoMSIA models (data not shown). Inclusion of
ClogP,%” a physicochemical parameter for lipophilicity,
did not improve the significance of the CoMFA model
(data not shown).

To further explore whether hydrophobic interactions
contribute significantly to the antitubercular activity,
hydrophobic fields were computed and correlated alone
as well as in combination with the steric and electro-
static fields with the activity. The results of this analysis
are summarized in Table 7. Alone with the hydrophobic
fields, the model showed a significant r2, of 0.424, but
the poor rgred value of —0.342 was obtained. Along with
the steric and electrostatic fields, r?v improved slightly
but the external predictivity of this model decreased
significantly. It is apparent that the steric and electro-
static fields alone are adequate in both CoMFA and
CoMSIA to characterize the variance in biological activ-
ity of these antitubercular compounds.
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Figure 4. Plots of (a) calculated vs observed activity for the
training set and (b) predicted vs observed activity for the test
set molecules.

The correlations obtained were not based on chance
correlations as can be seen from the cross-validated r?
values (Table 6). All of these analyses were repeated
100 times with LOO cross-validation each time after
randomly interchanging the biological activities (ran-
dom permutation testing) between the compounds. The
means of the 100 runs are reported in Table 6. In all
analyses, the mean r3, values were negative. This
indicates greater than 99.9% likelihood that the rela-
tionship using the correct assignment of the biological
activities did not arise by chance.

Graphical Interpretation of the Results. To vis-
ualize the information content of the derived 3D QSAR
model, COMFA contour maps were generated by inter-
polating the products between the 3D QSAR coefficients
and their associated standard deviations. Figure 5
shows the stereoview of the CoOMFA contour map from
the analysis based on alignment 111 using compound 21
(most potent compound of the series) as a reference
structure. The green and yellow polyhedra describe
regions of space around the molecules where increases
in steric bulk, respectively, enhance or diminish anti-
tubercular activity. The red and blue polyhedra describe
regions where high electron density (i.e., negative
charge or polarity) within the substrate structure
enhances or diminishes activity, respectively.

Besides greater robustness and better predictive
power, COMSIA provides significantly improved contour
diagrams. They allow the correlation results to be
mapped back onto the molecular structures. The coef-
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Figure 5. CoMFA STDEV*COEFF contour plot from analysis
based on alignment I11. Sterically favored areas (contribution
level of 80%) are represented by green polyhedra. Sterically
disfavored areas (contribution level of 20%) are represented
by yellow polyhedra. Negative charge-favored areas (contribu-
tion level of 80%) are represented by blue polyhedra. Negative
charge-disfavored areas (contribution level of 20%) are repre-
sented by red polyhedra.

ficient contour maps using the field type “STDEV*
COEFF” were generated. The steric contribution con-
tour plots from the analysis based on alignment 111 are
plotted in Figure 6. In these figures, the green contours
represent regions of high steric tolerance (80% contribu-
tion), while the yellow contours represent regions of low
steric bulk tolerance (20% contribution). The yellow
region in the interior of the molecule arises from the
fact that CoMSIA fields are calculated inside as well as
outside the molecular surface. The regions of molecules
inside its van der Waals radius are not involved in
drug—receptor interaction. The presence of sterically
unfavored yellow contours near R has a negative effect
on the activity as shown by compound 11 (Figure 6).
The contour map also shows a large green contour in
the vicinity of R4. The occupation of this area by a bulky
group will have a positive effect on the biological activity
as represented by compound 21 (Figure 6), which has
more activity than compound 22 due to the presence of
a bulky chloro group.

The electrostatic contour plots are shown in Figure
7. In these figures, the red contours represent regions
of decreased tolerance for positive charge (20% contribu-
tion), while the blue contours represent regions of
increased tolerance for positive charge (80% contribu-
tion). A predominant feature of the electrostatic plot is
the presence of a blue contour surrounding R, i.e., 3-
and 4-positions of the 3,5-disubstited carbamoylphenyl
moiety. Therefore, a low electron density in this area
will have a positive effect on the biological activity.
Compounds containing electron-withdrawing substitu-
ents at these positions show more activity (compound
21, Figure 7). The red contour present near the 4-posi-
tion of the 4-phenyl ring indicates the requirement of
increased electron density in this area. The blue con-
tours present near the 3,5-dicarbamoylphenyl rings
coincide with the sterically unfavorable yellow contours.
Therefore, the substituents present at these positions
should be electron-withdrawing but with limited steric
bulk. The steric and electrostatic contour plots of
compound 21 and compound 11 are shown for reference.
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Table 9. QSAR Equations Generated Using GFA for the Training Set of Molecules

no. eq LOF r? F value r2 rgred
1 activity = 6.2764 — 10.5279 (Density) + 0.4485 (HbondAcc) + 0.004036 (PMI_X) 0.310 0.777 20.924 0.657 0.424
2 activity = —5.3487 + 0.5432 (RotlBonds) + 0.02970 (Foct) + 0.003497 (PMI_X) 0.321 0.769 19.986 0.657 0.551
3 activity = —5.6129 + 0.03111 (Fh20) + 0.5679 (RotlBonds) + 0.003343 (PMI_X) 0.323 0.768 19.824 0.654 0.549
4 activity = —4.2602 + 0.2817 (HbondAcc) + 0.3468 (RotlBonds) — 0.1202 (Dipole_mag) 0.333 0.761 19.095 0.677 0.544
5 activity = —5.05404 — 0.1103 (Dipole_Z) + 9.6037 (FPSA_P) + 0.008149 (PMI_X) 0.223 0.840 31.456 0.781 0.061
6  activity = —5.7508 + 5.2509 (FPS_PA) + 0.003547 (PMI_X) + 0.4268 (RotlBonds) 0.284 0.796 23.444 0.691 0.560

Figure 6. Steric maps from the CoMSIA model using align-
ment I11. (2) Compound 21 shown inside the field. (b) Com-
pound 11 shown inside the field. Green contours (contribution
level of 80%) represent areas where steric bulk will enhance
activity, and yellow contours (contribution level of 20%)
highlight areas, which should be kept unoccupied for increased
activity.

GFA. The QSAR models generated using GFA tech-
nique are shown in Table 9. Initially, different sets of
equations were generated by altering the chain length
of the equations. The generated equations were evolved
by repeating the GFA runs to check the stability of the
GFA models. The final sets of GFA models were
analyzed statistically to select the best model. Observa-
tion of the variable usage graph indicated that the terms
RotIBonds, PMI_X, HbondAcc, and Density contribute
more significantly than all other descriptors. The best
equation from the set of equations was selected on the
basis of predictivity, variables, and LOF value. Equa-
tions 1—4 (Table 9) show more or less similar internal
predictivity, but eq 2 shows better external predictivity
for test set molecules. RotlBonds, PMI_X, and Foct
contribute to this equation and explain about 75%
variance in the activity. These variables show low
correlation among themselves indicating low probability
of chance correlation. Equation 2 with a better-predicted
r2 value of 0.551 describes the QSAR model for antitu-
bercular activity of these compounds. The equation has

Figure 7. Electrostatic maps from the CoMSIA model using
alignment I11. (2) Compound 21 shown inside the field. (b)
Compound 11 shown inside the field. Blue contours (contribu-
tion level of 80%) represent regions where an increase of
positive charge will enhance activity, and red contours (con-
tribution level of 20%) highlight areas where more negative
charge is favored.

a spatial parameter, PMI_X, structural parameter,
RotIBonds, and thermodynamic parameter, Foct, which
contribute significantly to the activity. PMI_X, principal
moment of inertia X component, represents the orienta-
tion or distribution of the total molecular mass in the
3D space. It reflects that the conformation of molecules
is important for activity. Because PMI_X shows positive
correlation with activity, it indicates that the proper
spatial orientation of the carbamoylphenyl groups is
important for interaction with some receptor site as
these groups lie along the X-axis. Foct is 1-octanol
desolvation free energy, and positive correlation of this
term with activity indicates that increase in the Foct
value would result in increase in activity. RotIBonds is
the number of rotatable bonds present in the molecule.
It is positively correlated with the activity; the higher
the number of rotatable bonds, the higher is the activity.
In compounds with higher activity groups such as
N(CH3),, OCHgs, SCH3, etc., which increase the number
of rotatable bonds in the molecule, are present at
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Figure 8. Superposition of molecules (training and test sets)
using (a) RMS fitting (alignment 1), (b) field fit (alignment I1),
and (c) flexible fitting (multifit) (alignment I11).

position 4 of the 4-substituted phenyl ring, which may
act as H-bond acceptor groups.

On the putative mode of action of these agents, we
reasoned that the rate of amide bond hydrolysis might
be the major factor affecting the antitubercular activity.
The CoMFA and CoMSIA studies indicated that the
presence of a substituent at position 2 of the carbamoyl
phenyl ring is sterically unfavorable for activity. This
might be related to the reduction in the polar solvent
accessible surface area around the amide bond. To
confirm this hypothesis, we have used the fraction of
polar solvent accessible surface area to the total solvent
accessible surface area (FASA_P) as one of the descrip-
tors.3® When this descriptor was used along with others
in the GFA run, the resulting variable usage graph
indicated the dominant contribution of FASA_P. The eqs
5 and 6 (Table 9) indicate the two best models. Among
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these, eq 5, although it exhibited high internal predic-
tivity, lacked external predictivity. Equation 6 with high
r3, and r2 ., values coupled with low LOF is proposed
as a model that best describes the antitubercular
activity of this series of compounds, and the terms
RotlBonds, PMI_X, and FASA_P explain about 80%
variation in biological activity. This equation contains
a parameter FASA P, which is a fraction of polar
solvent accessible surface area to the total solvent
accessible surface area. It shows positive correlation
with activity indicating that the higher the value of this
parameter, the higher is the activity. The presence of
groups such as Cl and CHj3; at position 2 of the substi-
tuted phenylcarbamoyl groups decreases the solvent
accessible surface area around the amide bond, which
may reduce the rate of hydrolysis of the amide bond—
probably a crucial step for the antitubercular activity
of these compounds. This is supported by the observa-
tion that the presence of bulky groups at these positions
is detrimental for activity. The observed and calculated
biological activities of the training set and test set
molecules are given in Tables 2 and 4, respectively. The
plots of (i) calculated and observed and (ii) predicted and
observed biological activities for the training and test
sets, respectively, are shown in Figure 4.

Conclusions

Two 3D QSAR methods, i.e., COMFA and CoMSIA,
were applied to rationalize the antitubercular activity
of a set of 33 molecules belonging to the 1,4-dihydro-
pyridine class. The 3D QSAR models obtained using
three alignment rules showed a high correlative and
predictive ability. A high bootstrapped r? value and
small standard deviations indicate that a similar rela-
tionship exists in all compounds. Inclusion of LUMO
energies that reflect the donor—acceptor interactions or
ClogP, a lipophilicity parameter, did not improve the
significance of both the CoMFA and the CoMSIA
models. The results show good correlations between
steric and electrostatic fields and antitubercular activ-
ity. The contour diagrams obtained for the CoMSIA field
contributions can be mapped back onto the structural
features accounting for the activity trends in the series.

A QSAR study was performed for the same set of
molecules using different types of physicochemical
descriptors. The QSAR models generated using GFA
technique revealed that spatial properties and confor-
mational flexibility of side chains play important roles
for antitubercular activity. Inclusion of fractional polar
solvent accessible surface area as a descriptor in the
model generation resulted in models with significant
statistics, which may support the possible mode of action
of these compounds. On the basis of the results obtained
from these studies, novel molecules can be designed to
possess better biological activity.
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